Rutgers University: Algebra Written Qualifying Exam

 August 2015: Problem 2 SolutionExercise. Recall that the algebraic multiplicity of an eigenvalue of a square matrix is defined as its multiplicity as a root of the characteristic polynomial of that matrix. If A is a square matrix with complex entries, let $\exp (A)$ denote the exponential of A, defined as the power series

$$
\exp (A)=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}=I+A+\frac{1}{2} A^{2}+\ldots
$$

Assume all eigenvalues of A are real. If λ is an eigenvalue for A with algebraic multiplicity μ, show that e^{λ} is an eigenvalue for $\exp (A)$, and has the same algebraic multiplicity μ.

Solution.

If $\lambda \in \mathbb{R}$ is an eigenvalue of A then $\exists \vec{v}$ s.t. $A \vec{v}=\lambda \vec{v}$.

$$
\begin{aligned}
\Longrightarrow \exp (A) \vec{v} & =\left(\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}\right) \vec{v} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} A^{n} \vec{v} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \lambda^{n} \vec{v} \\
& =\left(\sum_{n=0}^{\infty} \frac{1}{n!} \lambda^{n}\right) \vec{v} \\
& =e^{\lambda} \vec{v}
\end{aligned}
$$

Thus, if is an eigenvalue for A, then e^{λ} is an eigenvalue for A.
Let $A=P J P^{-1}$ be the Jordan canonical form of A.
Then $A \sim J$ so they have the same eigenvalues and the same algebraic multiplicity.
$J_{\lambda_{i}, m_{i}}^{n}$ is the upper triangular matrix with diagonal λ_{i}^{n}.
$\Longrightarrow \sum_{n=0}^{\infty} \frac{1}{n!} J_{\lambda_{i}, m_{i}}^{n}$ is an upper triangular matrix with diagonals $\sum_{n=0}^{\infty} \frac{1}{n!} \lambda_{i}^{n}=e^{\lambda_{i}}$
$\Longrightarrow \sum_{n=0}^{\infty} J_{\lambda_{i}, m_{i}} \sim A_{i}$ has eigenvalues $e^{\lambda_{i}}$ with multiplicity m_{i}
$\Longrightarrow e^{\lambda}$ has the same algebraic multiplicity as λ in A

