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Exercise. Recall that the algebraic multiplicity of an eigenvalue of a square matrix is defined as
its multiplicity as a root of the characteristic polynomial of that matrix. If A is a square matrix
with complex entries, let exp(A) denote the exponential of A, defined as the power series

exp(A) =
∞∑

n=0
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n!A

n = I + A + 1
2A2 + . . . .

Assume all eigenvalues of A are real. If λ is an eigenvalue for A with algebraic multiplicity µ, show
that eλ is an eigenvalue for exp(A), and has the same algebraic multiplicity µ.

Solution.
If λ ∈ R is an eigenvalue of A then ∃v⃗ s.t. Av⃗ = λv⃗.
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∞∑
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( ∞∑
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= eλv⃗

Thus, if is an eigenvalue for A, then eλ is an eigenvalue for A.

Let A = PJP −1 be the Jordan canonical form of A.
Then A ∼ J so they have the same eigenvalues and the same algebraic multiplicity.
Jn

λi,mi
is the upper triangular matrix with diagonal λn

i .

=⇒
∞∑

n=0

1
n!J
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λi,mi

is an upper triangular matrix with diagonals
∞∑

n=0
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n!λ

n
i = eλi

=⇒
∞∑

n=0
Jλi,mi

∼ Ai has eigenvalues eλi with multiplicity mi

=⇒ eλ has the same algebraic multiplicity as λ in A
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